Lyapunov exponents, dual Lyapunov exponents, and multifractal analysis.

نویسندگان

  • Aihua Fan
  • Yunping Jiang
چکیده

It is shown that the multifractal property is shared by both Lyapunov exponents and dual Lyapunov exponents related to scaling functions of one-dimensional expanding folding maps. This reveals in a quantitative way the complexity of the dynamics determined by such maps. (c) 1999 American Institute of Physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifractal Analysis for Lyapunov Exponents on Nonconformal Repellers

For nonconformal repellers satisfying a certain cone condition, we establish a version of multifractal analysis for the topological entropy of the level sets of the Lyapunov exponents. Due to the nonconformality, the Lyapunov exponents are averages of nonadditive sequences of potentials, and thus one cannot use Birkhoff’s ergodic theorem neither the classical thermodynamic formalism. We use ins...

متن کامل

The Lyapunov Spectrum for Conformal Expanding Maps and Axiom-A Surface Diffeomorphisms

Lyapunov exponents measure the exponential rate of divergence of infinitesimally close orbits of a smooth dynamical system. These exponents are intimately related to the global stochastic behavior of the system and are fundamental invariants of a smooth dynamical system. In [EP], Eckmann and Procaccia suggested an analysis of Lyapunov exponents for chaotic dynamical systems. This suggestion was...

متن کامل

To appear in Israel Journal of Mathematics LYAPUNOV EXPONENTS FOR PRODUCTS OF MATRICES AND MULTIFRACTAL ANALYSIS. PART II: NON-NEGATIVE MATRICES

We continue the study in [11, 14] on the upper Lyapunov exponents for products of matrices. Here the matrix function M(x) is only assumed to be non-negative. In general, the variational formula about Lyapunov exponents we obtained in part I does not hold in this setting. Anyway we focus our interest on a special case where M(x) takes finite values M1, . . ., Mm. In this case we prove the variat...

متن کامل

Nonhyperbolic Step Skew-products: Entropy Spectrum of Lyapunov Exponents

We study the fiber Lyapunov exponents of step skew-product maps over a complete shift of N , N ≥ 2, symbols and with C1 diffeomorphisms of the circle as fiber maps. The systems we study are transitive and genuinely nonhyperbolic, exhibiting simultaneously ergodic measures with positive, negative, and zero exponents. We derive a multifractal analysis for the topological entropy of the level sets...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 1999